Mechanistic Insight into Supramolecular Polymerization in Water Tunable by Molecular Geometry

نویسندگان

چکیده

Open AccessCCS ChemistryCOMMUNICATION14 Jul 2022Mechanistic Insight into Supramolecular Polymerization in Water Tunable by Molecular Geometry Fan Xu, Stefano Crespi†, Lukas Pfeifer†, Marc C. A. Stuart and Ben L. Feringa Xu Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG Google Scholar More articles this author , Crespi† †Stefano Crespi’s present address is: Ångstrom Laboratory, Department Uppsala University, 751 20. Pfeifer’s Laboratory Photonics Interfaces, Chemistry Chemical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015.Google Pfeifer† *Corresponding author: E-mail Address: [email protected] Key Advanced Materials Joint International Research Precision Nobel Prize Scientist Center, Frontiers Science Center Materiobiology Dynamic Fine Chemicals, School East China Technology, Shanghai 200237 https://doi.org/10.31635/ccschem.022.202201821 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareFacebookTwitterLinked InEmail self-assembly water based on non-covalent bonding is attracting major attention due the potential hydrogels aqueous polymers biomedical applications. Although supramolecular polymerization organic solvents well established, key design features, assembly mechanisms achieving control over aggregate structures remain challenging. Here, we disassembly geometrical isomers a stiff-stilbene bis-urea amphiphile ( SA) pure water. A remarkable feature system that (E)-isomer forms both solvents. Taking advantage unique property, hydrophobic effect was studied comparing systems. The process follows an enthalpy-driven nucleation-elongation (cooperative) mechanism with standard Gibbs free energy (?G° = ?53 kJ mol?1) double value one found toluene. We attributed distinctive Furthermore, discovered isomer-dependent process, which can be used aggregation media. Due substantial geometric difference between (E)- SA (Z)- SA, compared their study influence different driving forces involved process. cooperatively influenced hydrogen bonding, ?-stacking, effects, whereas mainly driven effects. As result, fiber length much longer than presenting opportunities Download figure PowerPoint Introduction are highly ordered assemblies held together bonds.1–7 reversible interaction monomers confers bountiful these as smart materials, opening new avenues fascinating opportunities, ranging from material recycling applications.3,8–11 solute-solute interactions well-established,1,2,4 solute-solvent interplay has recently attracted interest chemists.12–14 medium nature, many exquisite assemblies,15–24 low-molecular-weight gels,25–29 polymers30–36 have been developed media various applications, such biomolecular materials37,38 soft actuators.39–41 However, detailed insight far being understood it solvents.12,14 Equally challenging elucidating structural features enable aggregates Forming requires delicate amphiphilic monomers: balance hydrophilicity hydrophobicity sufficient directional (non-covalent bonding) induce formation linear instead micellar aggregates.32,42,43 It notoriously thermodynamic temperature-dependent experiments strong when exposed water.44–46 principal methods investigate properties computational simulations or inferring conclusions water-organic solvent mixtures.46–50 Meijer coworkers revealed controls growth using molecular dynamics (MD) simulations.49 Würthner signature ?-amphiphile, oligo(ethylene glycol) (OEG) functionalized perylene bisimides, water/tetrahydrofuran mixture, revealing entropically-driven process.46 Interestingly, its analog characterized methylene spacer bisimide core phenyl substituent bearing OEG followed water.45 resulting show opposite reactions temperature changes: heating induces former structures, latter assemble during cooling.45,46 These studies indicate minimal changes structure resulted fundamentally processes.45–47,51–53 Noting multiparameter nature water, question how effects affect remains largely unanswered. also particularly interested assembly. Stiff-stilbene five-membered ring stilbene54 example, switchable receptors ligands,55–58 force probes,59 aggregation-induced emission.60 C–Ph torsion angle nearly zero,61 imposing planar ? facilitating assemblies,54,62–64 (Z)-isomer loses planarity.65 huge differences (Z)-isomers offer opportunity ?–? polymerization.64 Recently, reported photoinduced cooperative bis-ureas toluene taking intramolecular intermolecular hydrogen-bonding isomers.63 In study, investigated photoswitchable experimental parameters gain insights role (Figure 1). showed rather ability form To best our knowledge, limited focus solvent-adaptive polymers66; hence, findings provide excellent compare processes distinct environments additional benefit geometry controlled demand light. Figure 1 | schematic illustrations (E)-SA (Z)-SA Both follow mechanism, where (?G°) monomerically dissolved toluene, short fibers Results Discussion behavior (see Supporting Information Figures S10–S16 NMR high resolution MS data)in monitored UV–vis absorption spectrum (12.5 ?M) upon cooling range 310 370 K at rate 1.0 K/min details). characteristic band maximum centered 371 nm 2a), comparable toluene.63 Upon heating, decreased intensity, accompanied two local maxima 340 357 nm, closely resembles monomeric [e.g., dimethyl sulfoxide (DMSO)].63 polymer heating. K, gradually disappeared concomitant 2b), suggesting transition well-defined aggregates. steep increase critical 358.5 (inset 2b). non-sigmoidal curve sharp reflects process.53,67–69 2 Temperature-dependent (a) (b) K/min. Inset: nm. (c) Cryo-TEM image (0.4 mM) (d) Hexamer optimized GFN-FF level identify structure, performed cryo-transmission electron microscopy (TEM) measurements formed images nanofibers hundreds nanometers (?500 nm) uniform diameter 6.8 ± 0.5 2c S1), indicating 1D polymer. support hexamer modeled employing GFN field (GFN-FF).70 preliminary MD run 100 ps 398 Berendsen thermostat implicit (GBSA model). molecule then same theory 2d).70,71 (E)-stiff-stilbene units stacked distance 3.5–4.0 Å, main hold molecules nucleation stage ?-interactions cores, propagated along fiber. While H-bonding ureas strengthens side chains neighboring final polymer, random orientation, they seem contribution stage. bonds assembly, added concentration competing H-bond forming compounds solution (5.0 S9). remained stable after adding 105 equiv urea, evidenced consistent S9a). Aiming break formic acid stronger reagent S9b).72 even 3 × acid. stability pockets C6 alkyl chain.66,73 results hypothesis increased thanks cannot easily disrupted, excess reagent. Consequently, favorable urea interactions, is, H-bonding, facilitate water.49 recorded ? samples increasing total (cT) S4 S5). curves representing degree (?agg, estimated function shown 3a 3b. processes, shape combination intense transitions temperatures Te Te? confirm (nucleation-elongation) polymerization.53,67–69 higher (Te) (Te?) thermal hysteresis 3c), under kinetic control.68 contrast, heating-induced control, observation confirmed unaltered K·min?1 S6). further analyzed melting obtain Van’t Hoff plot.68 natural logarithm cT relationship reciprocal 3d). enthalpy ?H° ?124 mol?1 more negative (?77 obtained (Table Possibly, contributions stacking, while non-classical effect74 leads enthalpy.45 entropy (?S°) ?244 J K?1, ?165 K?1 organized decrease degrees freedom contribute enhanced almost robust equilibrium constants 2.8 109 M?1 9.8 104 1), respectively, mass model Markvoort et al.75 overall suggest contributing significantly ?G°. (?agg) apparent coefficients concentrations Values observed cT. Natural (Van’t plot). Table Thermodynamic Parameters Describing Assembly Toluene Solvent (kJ ?S° (J K?1) ?G° (293 K) (M?1) ?77 ?28 gelated relatively low (1 mg/mL), following heating–cooling cycle S3), failed hydrogel conditions. cryo-TEM above sample had undergone (annealing) were similar S3 entanglement suggests fibrous network contributes gelation. photo-isomerization S7). After irradiating 30 min, 1H same, assembled (aggregate) state possibly hampered room temperature, but happed S7 S10). By feasible,63 speculate reason impeded isomerization consequence aggregation,22 ?G°water ?G°toluene. aggregating abilities broadened proton resonances spectra (298 500 MHz, D2O) S17).76 measured SA. hypsochromic shift DMSO 4a), fibers, approximately 50 8.0 0.6 4b S2). ones less bonds.63 dihedral plane group Ph1 ethylene atom C1 14.3° 4a); not susceptible stacking.65 Therefore, shorter might related lack stacking bonds. direct situ irradiation feasible, external photochemical allows controlling fiber, tenfold diameter. 4 (10.0 (Z)-SA. Conclusions analysis adaptive determined impact ?G°, displays presence drastically polymers. will enrich fundamental understanding polymers, materials bottom-up strategy. available including preparation, characterization, UV–vis, cryo-TEM, NMR, studies. Conflict Interest There no conflict report. Funding Financial Netherlands Organization Scientific (NWO-CW), European Council (ERC; advanced grant no. 694345 B.L.F.), Dutch Ministry Education, Culture (Gravitation program 024.001.035), Scholarship (CSC; 201707040064 F.X.), Marie Sk?odowska-Curie Actions (Individual Fellowships 838280 S.C. 793082 L.P.) gratefully acknowledged. Acknowledgments authors wish acknowledge Dr. Sander J. Wezenberg Franco King-Chi Leung helpful discussions. References 1. Lehn M.Supramolecular Chemistry; John Wiley & Sons: Strasbourg, 1995. 2. Brunsveld L.; Folmer B. B.; E. W.; Sijbesma R. P.Supramolecular Polymers.Chem. Rev.2001, 101, 4071–4098. 3. Aida T.; Stupp S. I.Functional Polymers.Science2012, 335, 813–817. 4. Greef T. F. A.; Smulders M. J.; Wolffs M.; Schenning P. H. P.; W.Supramolecular Polymerization.Chem. Rev.2009, 109, 5687–5754. 5. Schmuck C.; Wienand W.Self-Complementary Quadruple Hydrogen-Bonding Motifs Functional Principle: From Dimeric Supramolecules Polymers.Angew. Chem. Int. Ed.2001, 40, 4363–4369. 6. Dong S.; Zheng Wang F.; Huang F.Supramolecular Polymers Constructed Macrocycle-Based Host-Guest Recognition Motifs.Acc. Res.2014, 47, 1982–1994. 7. Hartlieb Mansfield D. H.; Perrier S.A Guide Polymerizations.Polym. Chem.2020, 11, 1083–1110. 8. Loos van Esch H.Design Application Self-Assembled Low Weight Hydrogels.Eur. Org. Chem.2005, 2005, 3615–3631. 9. Thompson Korley J.100th Anniversary Macromolecular Viewpoint: Engineering Responsive Applications—Design Functionality.ACS Macro Lett.2020, 9, 1198–1216. 10. Clemons D.; I.Design Polymers.Prog. Polym. Sci.2020, 111, 101310. 11. Goor O. G. Hendrikse I. Dankers Y. W.From Multi-Component Biomaterials.Chem. Soc. Rev.2017, 46, 6621–6637. 12. Mabesoone Palmans W.Solute-Solvent Interactions Modern Physical Organic Chemistry: Muse.J. Am. Soc.2020, 142, 19781–19798. 13. Satake A.The Effect Weak Polymers: Differences Small Probes Polymers.Chempluschem2020, 85, 1542–1548. 14. Cremer Flood Gibb Mobley L.Collaborative Routes Clarifying Murky Waters Aqueous Chemistry.Nat. Chem.2017, 10, 8–16. 15. Datta Saha Stang J.Hierarchical Assemblies Coordination Complexes.Acc. Res.2018, 51, 2047–2063. 16. Chen Costil R.; K. L.Self-Assembly Photoresponsive Amphiphiles Media.Angew. Ed.2021, 60, 11604–11627. 17. Volari? Szymanski Simeth N. L.Molecular Photoswitches Environments.Chem. Rev.2021, 50, 12377–12449. 18. Coleman Beierle Maciá Caroli G.; Mika Dijken Browne W. L.Light-Induced Disassembly Vesicle-Capped Nanotubes Observed Real Time.Nat. Nanotechnol.2011, 6, 547–552. 19. Barclay Constantopoulos K.; Matisons J.Nanotubes Amphiphilic Molecules via Helical Intermediates.Chem. Rev.2014, 114, 10217–10291. Thota Urner Haag R.Supramolecular Architectures Dendritic Water.Chem. Rev.2016, 116, 2079–2102. 21. Pfeifer L.Multi-Modal Control Motor Bola-Amphiphile Commun.2020, 56, 7451–7454. 22. Franken E.; Wei Y.; Boekema Zhao L.Solvent Mixing Induce Aggregation Bowl-Shaped Particles: Underlying Mechanism, Particle Nature, Behavior.J. Soc.2018, 140, 7860–7868. 23. Hou L.Amphiphilic Motors Water.J. Soc.2016, 138, 660–669. 24. L.Dynamic Macroscopic Foam Properties.J. 10163–10172. 25. Draper Adams J.Low-Molecular-Weight Gels: State Art.Chem2017, 3, 390–410. 26. Buerkle Rowan J.Supramolecular Gels Formed Species.Chem. Rev.2012, 41, 6089–6102. 27. Chivers Smith K.Shaping Structuring Gels.Nat. Rev. Mater.2019, 4, 463–478. 28. Jones Steed W.Gels Sense: That Respond Heat, Light Sound.Chem. 45, 6546–6596. 29. Panja J.Stimuli Transformations Gels.Chem. 5165–5200. 30. Liu Yu Gao Z.; Zhang X.Water-Soluble Driven Multiple Host-Stabilized Charge-Transfer Interactions.Angew. Ed.2010, 49, 6576–6579. 31. Ma X.; Tian H.Stimuli-Responsive Solution.Acc. 1971–1981. 32. Krieg Bastings Besenius Rybtchinski B.Supramolecular Media.Chem. 2414–2477. 33. Su Hogervorst Lafleur Lou der Marel Codee W.Elucidating Ordering Glycocalyx Mimicking Copolymers Soc.2019, 141, 13877–13886. 34. Helmers I.; Ghosh Albuquerque Q.; Fernández G.Pathway Length Media Hydrogen Bonding Lock.Angew. Ed.2020, 4368–4376. 35. Fuentes Gerth Berrocal Matera Gorostiza Voets Pujals Albertazzi L.An Azobenzene-Based Single-Component Polymer Stimuli 10069–10078. 36. Yin Song Jiao X.Dissipative Powered Light.CCS Chem.2019, 1, 335–342. Abstract, 37. Zhou Zhu Lu Shen J.Functional Biomedical Applications.Adv. Mater.2015, 27, 498–526. 38. Biswas Kinbara Niwa Taguchi Ishii N.; Watanabe Miyata Kataoka T.Biomolecular Robotics Chemomechanically Guest Delivery Fuelled Intracellular ATP.Nat. Chem.2013, 5, 613–620. 39. Kajitani Fukushima Giessen L.Artificial Muscle-Like Function Hierarchical Motors.Nat. Chem.2018, 132–138. 40. den Enk Kuipers L.Supramolecular Packing Alignment Controls Actuation Speed Strings Amphiphiles.J. 17724–17733. 41. L.Dual-Controlled Motions Amphiphiles.Angew. Ed.2019, 58, 10985–10989. 42. Allampally Florian Mayoral Rest Stepanenko V.; G.H-Aggregates Oligophenyleneethynylene (OPE)-BODIPY Systems Water: Size-Dependent Encapsulation Mechanism Co-Aggregate Morphology.Chem. Eur. J.2014, 20, 10669–10678. 43. Rödle Lambov Mück-Lichtenfeld G.Cooperative Nanoparticle H-Type Self-Assembly Bolaamphiphilic BODIPY Derivative Medium.Polymer2017, 128, 317–324. 44. Schoenmakers Madhikar Bochicchio Baumeier Pavan W.Insights Kinetics Comonomer Incorporation Water.Macromolecules2019, 52, 3049–3055. 45. Syamala F.Modulation ?-Amphiphiles Enthalpy- Entropy-Driven Enwrapping Substituents.Chem. J.2020, 26, 8426–8434. 46. Görl F.Entropically Perylene Dyes Water.Angew. Ed.2016, 55, 12094–12098. 47. Baker Leenders W.Consequences Chirality Dynamics Water-Soluble Polymer.Nat. Commun.2015, 6234. 48. M.From Cooperative Using Coarse-Grained Simulations.ACS Nano2017, 1000–1011. 49. Garzoni M.Effect H-Bonding Order Amplification Growth 13985–13995. 50. Fucke Schellheimer G.Self-Assembly (Hydro)Gelation Triggered ?-? And Unconventional C-H···X Ed.2014, 53, 700–705. 51. Soberats Gekle F.Thermodynamic Insights Entropically Sci.2019, 9358–9366. 52. Casellas Torres García-Iglesias Isodesmic Highly Cooperative: Reverting Monomer Design.Chem. Commun.2018, 54, 4112–4115. 53. Aratsu Takeya Pauw Hollamby Kitamoto Shimizu Takagi Haruki Adachi Yagai S.Supramolecular Copolymerization Integrative Self-Sorting Hydrogen-Bonded Rosettes.Nat. 1623. 54. Villarón J.Stiff-Stilbene Photoswitches: Fundamental Studies Emergent Applications.Angew. 59, 13192–13202. 55. L.Photocontrol Anion Binding Affinity Bis-Urea Receptor Derived Stiff-Stilbene.Org. Lett.2017, 19, 324–327. 56. L.Supramolecularly Directed Rotary Motion Receptor.Nat. 1984. 57. Sheng Crespi Unidirectional Sterically Overcrowded Photoswitchable Receptor.Org. Front.2020, 7, 3874–3879. 58. L.Modulation Figure-of-Eight Strip Based Stiff-Stilbene.Chem. 7783–7787. 59. Yang Q. Kucharski Khvostichenko Boulatov R.A Force Probe.Nat. Nanotechnol.2009, 302–306. 60. Wu Tung Z.Stiff-Stilbene Derivatives New Bright Fluorophores Aggregation-Induced Emission.Sci. 62, 1194–1197. 61. Ogawa Harada Tomoda S.Unusually Short Ethylene Bond Large Amplitude Torsional (E)-stilbenes Crystals. X-ray Crystallographic Study “stiff” Stilbenes.Acta Crystallogr. Sect. B1995, 240–248. 62. Sun Niu Z.Photoresponsive AA/BB Comprising Stiff-Stilbene Guests Bispillar[5]Arenes.Polym. 8, 3596–3602. 63. L.From Photoinduced Organogels.J. Soc.2021, 143, 5990–5997. 64. Stiff Stilbene Unit.Angew. Ed.2013, 9738–9742. 65. S.“Stiff” Cis-Stilbenes. (Z)-6,6’-Dimethyl-1,1’-Biindanylidene (Z)-4,4’,7,7’-Tetramethyl-1,1’-Biindanylidene.Acta C Cryst. Struct. Commun.1995, 2125–2127. 66. Obert Bellot Bouteiller Andrioletti Lehen-Ferrenbach Boué F.Both Water- Organo-Soluble Stabilized Hydrophobic Interactions.J. Soc.2007, 129, 15601–15605. 67. Jonkheijm Van Der Schoot W.Probing Solvent-Assisted Nucleation Pathway Self-Assembly.Science2006, 313, 80–83. 68. Ogi Sugiyasu Takeuchi F.Mechanism Process Seeded Bisimide Organogelator.J. Soc.2015, 137, 3300–3307. 69. Nieuwenhuizen W.How Distinguish Polymerisation.Chem. J.2010, 16, 362–367. 70. Spicher Grimme S.Robust Atomistic Modeling Materials, Organometallic, Biochemical Systems.Angew. 15665–15673. 71. Bannwarth Caldeweyher Ehlert Hansen Pracht Seibert S.Extended Tight-Binding Quantum Methods.Wiley Interdiscip. Comput. Mol. Sci.2021, 1–49. 72. Lloyd O.; W.Anion-Tuning Gel Properties.Nat. Chem.2009, 437–442. 73. Mes Koenigs Harnessing Effects Formation.Chem. Commun.2013, 1963–1965. 74. Biedermann Nau Schneider J.The Revisited - Complexes Imply High-Energy Noncovalent Driving Force.Angew. 11158–11171. 75. Ten Eikelder De Hilbers J.An Equilibrium Model Chiral Polymers.J. Phys. B2012, 5291–5301. 76. Z.Hydrogen Small-Molecule Water.Org. Lett.2014, 4016–4019. Previous articleNext article FiguresReferencesRelatedDetails Issue AssignmentVolume 4Issue 7Page: 2212-2220Supporting Copyright Permissions© 2022 Chinese SocietyKeywordshydrophobic effectsstiff-stilbenebis-urea?-stackinghydrogen bondingsupramolecular polymerizationAcknowledgmentsThe Downloaded 664 times PDF DownloadLoading ...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic Insight into Control of CFTR by AMPK*S⃞

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP and protein kinase A (PKA)-regulated Cl(-) channel in the apical membrane of epithelial cells. The metabolically regulated and adenosine monophosphate-stimulated kinase (AMPK) is colocalized with CFTR and attenuates its function. However, the sites for CFTR phosphorylation and the precise mechanism of inhibition of CFTR by...

متن کامل

Mechanistic insight into Type I restriction endonucleases.

Restriction and modification are two opposing activities that are used to protect bacteria from cellular invasion by DNA (e.g. bacteriophage infection). Restriction activity involves cleavage of the DNA; while modification activity is the mechanism used to "mark" host DNA and involves DNA methylation. The study of Type I restriction enzymes has often been seen as an esoteric exercise and this ...

متن کامل

Mechanistic insight into proton-coupled mixed valency.

Stabilisation of the mixed-valence state in [Mo2(TiPB)3(HDOP)]2(+) (HTiPB = 2,4,6-triisopropylbenzoic acid, H2DOP = 3,6-dihydroxypyridazine) by electron transfer (ET) is related to the proton coordinate of the bridging ligands. Spectroelectrochemical studies suggest that ET is slower than 10(9) s(-1). The mechanism has been probed using DFT calculations, which show that proton transfer induces ...

متن کامل

Structural water as an essential comonomer in supramolecular polymerization

Although the concept of structural water that is bound inside hydrophobic pockets and helps to stabilize protein structures is well established, water has rarely found a similar role in supramolecular polymers. Water is often used as a solvent for supramolecular polymerization, however without taking the role of a comonomer for the supramolecular polymer structure. We report a low-molecular wei...

متن کامل

Supramolecular polymerization.

ion of the proton from the amino group of the monomer (phenyl 4-(alkylamino)benzoate) by the base, the reactivity of the phenyl ester moiety is deactivated, which prevents monomers from reacting with each other. The anion produced by proton abstraction from the monomer will only react with initiator, leading to an activated monomer that possesses a more reactive phenyl ester moiety compared to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CCS Chemistry

سال: 2022

ISSN: ['2096-5745']

DOI: https://doi.org/10.31635/ccschem.022.202201821